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ABSTRACT
Applications running on future high performance comput-
ing (HPC) systems are more likely to experience transient
faults due to technology scaling trends with respect to higher
circuit density, smaller transistor size and near-threshold
voltage (NTV) operations. A transient fault could corrupt
application state without warning, possibly leading to in-
correct application output. Such errors are called silent data
corruptions (SDCs).
In this paper, we present LADR, a low-cost application-

level SDC detector for scientific applications. LADR protects
scientific applications from SDCs by watching for data anom-
alies in their state variables (those of scientific interest). It
employs compile-time data-flow analysis to minimize the
number of monitored variables, thereby reducing runtime
and memory overheads while maintaining a high level of
fault coverage with low false positive rates. We evaluated
LADR with 4 scientific workloads and results show that
LADR achieved > 80% fault coverage with only ∼ 3% run-
time overheads and ∼ 1% memory overheads. As compared
to prior state-of-the-art anomaly-based detection methods,
SDC achieved comparable or improved fault coverage, but
reduced runtime overheads by 21% ∼ 75%, and memory
overheads by 35% ∼ 55% for the evaluated workloads. We
believe that such an approach with lowmemory and runtime
overheads coupled with attractive detection precision makes
LADR a viable approach for assuring the correct output from
large-scale high performance simulations.
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1 INTRODUCTION
High reliability is fundamental to the efficient utilization
of hardware resources and to user confidence in program
results. Unfortunately, while the new processor architectures
continue to boost performance with higher circuit density,
smaller transistor size and NTV operations, the hardware is
projected to be more susceptible to transient faults caused
by e.g., particle strikes and heat fluxes.
Transient faults occur with a higher frequency in large

scale HPC systems simply because of the sheer number of
assembled components [5, 20]. Oliveira et al. [28] projected
that a hypothetical exascale machine with 190, 000 cutting-
edge Xeon Phi processors would experience daily transient
errors even though their memory areas are protected with
ECC. Some transient faults will be masked by hardware
mechanisms or produce obvious failures (e.g., segmentation
faults). But more dangerously, others (e.g., those manifested
from units unprotected by ECC) could corrupt application
states without any warnings (SDCs), and lead to incorrect
scientific output [11, 24].

Complete and comprehensive SDC detection requires the
duplication of computing through either hardware or soft-
ware redundancy [19, 23, 26], but the overheads required
(∼2× resources), and the fact that fault-free operations re-
main the common case despite the increasing transient fault
threat [25], mean that such techniques have seen limited
adoption in scientific computing. Fortunately, many scientific
applications can tolerate some errors in their outputs [22, 28],
as long as the errors don’t introduce new data features. This
allows the HPC community to trade-off fault coverage for
the performance, and has motivated the development of

https://doi.org/10.1145/3208040.3208043


HPDC’18, June 11–15, 2018, Tempe, AZ, USA Chao Chen, Greg Eisenhauer, Matthew Wolf, and Santosh Pande

anomaly-based detection methods [14, 18, 21]. These meth-
ods seek to exploit characteristics implicit in many scien-
tific applications, such as those which iteratively simulate
changes in physical properties, in order to determine when a
calculated value has fallen outside its ‘expected’ range based
upon either prior or neighboring values.While applying such
techniques to all data in an application would be impractical,
it is viable to limit its use to only “variables of scientific inter-
est” [14] (e.g., variables that are actually output for further
analysis, or that are used in checkpoint/restart. We’ll call
them the ‘crucial variables’.) with relatively low overheads.
However, many scientific applications i.e., Parallel Ocean
Program (POP), have dozens of crucial variables, and even
when these techniques are limited to that set of data, over-
head imposed are still significant, perhaps too high for the
techniques to gain acceptance by the scientific community.

In this work, we seek to reduce these overheads by explor-
ing correlations among crucial variables and data points. In
particular, we present LADR, a light-weight anomaly-based
approach to protect scientific applications against SDCs.
LADR shares a similar detection model to that in [3, 14].
It is built upon those prior works by introducing compiler
techniques to detect and utilize the data-flow of the applica-
tion in order to limit monitoring overhead. LADR reduces
the overheads primarily through minimizing the number
of monitored variables. For a given set of crucial variables
C , LADR monitors a smaller set of variables D, such that
if variables in C are contaminated by SDCs, variables in D
will also be contaminated; or put differently, SDCs will be
definitely propagated from C to D. We name variables in
D as sink variables of C . LADR finds D mainly leveraging
compile-time data-flow analysis. The similar idea was also
presented in [3], but without reference to compile-time anal-
ysis. In addition, for each variable in D, LADR also applies a
data grouping technique to further reduce runtime and mem-
ory overheads, which is not explored in prior studies [3, 14].
LADR is designed to detect SDCs in crucial variables. SDCs
in control variables are not covered unless they are propa-
gated as corruptions to crucial variables. The paper makes
the following contributions:

(1) we proposed a methodology to minimize runtime and
memory overheads for anomaly-based SDC detection
techniques.

(2) we designed and implemented the LADR based on the
LLVM framework, and supports a majority of scientific
applications written in C/C++ and Fortran. Despite
some limitations that need to be refined, our proto-
type of LADR still presents one step towards building
application-level SDC mitigation frameworks.

(3) We evaluated LADR with 4 representative scientific
workloads including GTC-P, POP, LAMMPs and min-
iMD. We find that LADR is able to protect them from
influential SDCs with as low as ∼ 1% memory over-
heads, and ∼ 3% runtime overheads. As compared
to the state-of-the-art anomaly-based detection tech-
nique, LADR achieved comparable faulty coverage,
but reduced runtime overheads by > 20% and memory
overheads by up to 55%.

The evaluation results suggest that LADR is a promising
solution for scientific applications that can tolerate small nu-
merical fluctuations in their outputs. Certainly, LADR has its
constraints for applications in which the accuracy of results
is the users’ primary concern. We believe, however, LADR is
attractive in many situations since many scientific simula-
tions are approximate computing to physical phenomenons
and can tolerate some small errors [10, 22, 30] in their output.

2

2 RELATEDWORK
The resiliency issue has long been seen as an obstacle to
productive exascale systems [1, 5, 15], and has attracted at-
tention in prior work [2, 4, 9, 12]. In this section, we briefly
survey prior approaches to the problem, including alterna-
tives to LADR’s anomaly-based approach.

2.1 Anomaly-based techniques
Anomaly-based detection methods mainly exploit the char-
acteristics of the application data to detect SDCs. Yim et
al. [31] computed the histogram of application data to detect
outliers in conjunction with temporal and spatial similarity.
Di et al. [14] characterized features of applications’ outputs,
and exploited the smoothness of their outputs across time
dimension for detecting SDCs.

These techniques generally have three phases: 1) predict-
ing the next expected value in the time series for each data
point; and 2) determining a bound, e.g. normal value inter-
val, surrounding the predicted value. 3) detecting possible
SDCs by observing whether the observed value falls outside
the bound. There are 4 possible situations as depicted in
Figure 1. Obviously, as compared with complete computa-
tional redundancy, these methods trade off fault coverage for
performance. They could miss SDCs if the selected bound
ρ (shown in Figure 1(a)) or the prediction error ε (shown in
Figure 1(b)) is larger than the impact of SDCs. On the other
hand, it would incur false positives if ρ is smaller than ε . A
case depicting a successful detection is shown in Figure 1(d).

As mentioned previously, our work shares a core similar-
ity to that of Di et al. [14] with respect to the basic approach
of detecting SDCs through analysis of predicted values, and
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Berrocal et al. [3] introduces the concept of exploiting cor-
relation between variables. LADR extends these prior work
by proposing compiler techniques to exploit dataflow-based
variable correlation, and in exploring point grouping for
additional overhead reduction.

2.2 Redundancy-based approaches
Instruction-level redundancy is an important approach to
software-resiliency [8, 27, 29, 32]. EDDI [27] and SWIFT [29]
are two well-known studies in this space. EDDI duplicated all
instructions and “checking" instructions were inserted right
before storing a register value back to memory or determin-
ing the branch direction. SWIFT [29] optimized overheads of
EDDI through an enhanced control flow mechanism, but it
still incurred > 83% overheads. While complete duplication
of computation is the only close-to-foolproof defense against
SDCs, we believe that is too expensive for widespread use
and that the LADR approach, which leverages more of an
understanding of application semantics and is amenable to
compiler-based techniques with lower overheads has more
potential for general use.
On the other hand, process-level replication is also ex-

plored in [17, 19, 26]. Here, multiple instances of applications
are compared and divergences are taken to be evidence of
an SDC. RedMPI [19] ran a shadow process for each MPI
rank and redesigned MPI communication system to dupli-
cate message passing for both shadow process and principle
process. SDCs were detected through comparing messages
between replicas. ACR [26] replicated processes on different
nodes and detected SDCs by comparing check-pointing data
from each replica. Process-level replication generally doubles
the computing resources required for computation, a level
of overhead unlikely to be acceptable for many large-scale
scientific applications.

2.3 Algorithm-based fault tolerance
There are also several studies [6, 7, 13, 16] focusing on de-
signing resilient data structures and algorithms. Chen[6]
examined the block row data partitioning scheme for sparse
matrices, which were then utilized to recover critical data
without checkpointing. Du et al.[16] constructed a colum-
n/row checksum matrix for matrix computations, such that
SDCs can be detected by scanning partial product matrix
and recovered with the checksum matrix. These algorithm-
specific methods are highly specialized and as such focus on
specific computational kernels, which are normally a small
part of scientific applications. Faults that happen outside
the computational kernel but still affect the core computa-
tion may be not detectable in such cases. In contrast, we
believe the anomaly-based approach to have broad applica-
bility within the space of time-step-based iterative solvers

that are our current interest and they can protect applica-
tions against SDCs that happened anywhere during the run,
as long as they lead to a significant corruption of output
variables.

3 DESIGN OF LADR
This section details the design of LADR. We will first intro-
duce two observations that motivated the design, and then
present design details.

3.1 Motivation: Propagation of SDCs
Although by no means universal, time-step based iterative
solvers are an important component in many scientific simu-
lations, with each time-step implementing a time point in the
real world. These applications simulate real-world phenom-
ena by solving a system of differential equations on points
(e.g., grids, particles). Each point could be associated with
several states (i.e., speed, temperature, energy etc.), which
are crucial variables of applications. Applications proceed
along the temporal dimension to update states for each point.
The result of each time-step will be taken as the input to the
next time-step. Climate models are typical examples. They
treat the atmosphere as a cubic box divided into grids, and
each grid represents a geometrical area on the earth. Cli-
mate parameters, e.g., temperature, are computed by solving
atmosphere dynamic equations for each grid. To update a
specific state for a grid, the values of other states of other
grids would be used. Due to this nature, these applications
present two general characteristics that inspired the design
of LADR: Firstly, SDCs propagate among crucial variables
during the iterative updates. For example, Table 1 shows
that, for GTC-P and POP, the contamination of multiple cru-
cial variables could result from a single fault injected into
a data element of crucial variable listed in the first column.
Therefore, it is possible to detect SDCs by only monitoring
a subset of crucial variables. For GTC-P, specifically, it is
possible to protect the variables z0, z1, z2, z3, z4, and z5 by
only monitoring the variable moments.1 In observing this,
LADR shares a similarity with [3], which also notes that er-
ror correlation between variables can be exploited to reduce
SDC monitoring overhead, but does not specially propose a
method for establishing this correlation. The variables to be
monitored must be carefully selected such that SDCs which
occur in unmonitored variables will be captured. LADR lever-
ages data flow analysis to identify these variables since the
data-flow among crucial variables imply potential SDC prop-
agation path; Secondly, multiple data points of each contam-
inated crucial variable might be impacted by a single SDC,
as shown in Figure 2. This inspired us to group data points
1Each of these variables store attributes of particles, e.g., weight and velocity.
The names are as they appear in GTCP source code.
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Figure 1: Detection model of anomaly-based techniques (figure derived from [14])

to further reduce the overheads. As shown in our evaluation,
the grouping could also improve the prediction accuracy for
the predictor in Phase I, therefore, making the detector more
sensitive to SDCs.

(a) GTC-P (b) POP

Figure 2: Average number of contaminated data points
within 5 time-steps after a fault injection.

3.2 Overview of LADR
LADR is a lightweight application-level SDC detector for
iterative scientific applications. It consists of two compo-
nents: 1) Analyzer–a static compile-time analysis tool for
identifying sink variables for a given set of crucial variables;
and 2) Protector–a runtime library for conducting anomaly
detection. Figure 5 depicts the process of utilizing LADR to
protect scientific applications. First, given the crucial vari-
ables set, the Analyzer is used to determine their sink vari-
ables. The Analyzer identifies sink variables by building
a data-flow graph, which depicts potential SDC propaga-
tion paths among all crucial variables. The data-flow graph
is a directed graph with each node representing a crucial
variable, each edge representing a potential propagation di-
rection between two connected crucial variables, and the
weight on each edge representing relative execution orders
of the statement defining the propagation. Figure 4 gives
an example of data-flow graph among 5 variables (f is an
alias to e) for the code listed in Figure 3. Afterward, original
source files are modified to apply Protector on identified
sink variables. Protector is inserted at the end of the main
loop of scientific applications and invoked by every MPI rank
on every iteration.

1 #include <stdio.h>
2 void add(double x[], double y[], double z←↩

[], int size) {
3 for (int i = 0; i < size; i++)
4 z[i] = x[i] + y[i];
5 }
6
7 void mul(double x[], double y[], int factor←↩

, int size) {
8 for (int i = 0; i < size; i++)
9 y[i] = x[i] * factor;
10 }
11
12 int main(int argc , char **argv) {
13 double *a, *b, *c, *d, *e, *f, sum = 0;
14 int i, size;
15 a = (double *) malloc(size * 8);
16 ...
17
18 add(a, b, c, size);
19 for (i = 0; i < size; i++)
20 sum += c[i];
21 sum = sqrt(sum);
22 mul(b, d, sum , size);
23 f = e;
24 add(c, d, f, size);
25 add(f, d, d, size);
26 output(a,b,c,d,e);
27 }

Figure 3: Example code

a c1

d

4
e

5

b

2
3 6

7

Figure 4: Data-flow graph for the example code in Fig-
ure 3
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Table 1: Correlation among crucial variables. It is based on controlled fault injection experiments. Faults are
injected to variables in the first column and then the outputs of other variables are checked against the output of
fault-free run. Each run of the application performs one injection to one variable.

(a) GTC-P Particle Data Variables

injected
impacted z0 z1 z2 z3 z4 z5 moments

z0 ✓ ✓ ✓ ✓ ✓ ✓ ✓

z1 ✓ ✓ ✓ ✓ ✓ ✗ ✓

z2 ✗ ✗ ✓ ✗ ✓ ✗ ✓

z3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

z4 ✗ ✗ ✗ ✗ ✓ ✗ ✓

z5 ✓ ✗ ✗ ✓ ✓ ✓ ✓

(b) POP TAVG Output Variables

injected
impacted SALT SALT2 TEMP UVEL VVEL

FW ✗ ✓ ✓ ✓ ✓

Gradpy ✗ ✗ ✓ ✓ ✓

RHO ✗ ✗ ✓ ✓ ✓

TFW ✗ ✗ ✓ ✗ ✓

STF ✗ ✗ ✓ ✗ ✓

SMF ✗ ✗ ✗ ✗ ✓

Clang/DragonEgg

 Source Code:
.c/.f90/.f77

Analyzer

 llvm IR: .ll

Data Flow
 Map

(a) stage I

start

init

compute

Protector

Main Loop

finalize

end

(b) stage II

Figure 5: An overview of utilizing LADR

3.3 Analyzer: building data-flow graph for
identifying sink variables

The Analyzer extracts potential SDC propagation paths by
leveraging static data-flow analysis based on the observation
that SDCs would propagate from one variable – saying b,
to another – saying a, only if the calculation for a directly
or indirectly uses the value of b. Analyzer focuses on the
main computation codes – the main loop – of scientific ap-
plications. For simplicity, the Analyzer used the following
observations for scientific applications:
(1) crucial variables of these applications are life-time-

long arrays (a memory space). At the program level,
they are either defined as global arrays or allocated
during the initialization phase of the applications but
not deallocated until the end of execution.

(2) Parallelization techniques (MPI and OpenMP) have
no/limited impact on data-flows among crucial vari-
ables, because each process/thread conducts the same
computation but on a different portion of data.2 Hence,

2 There are two principal questions WRT how MPI and OpenMP might
impact LADR: 1) do they add additional dependencies for the Analyzer
to track, and 2) how they impact SDC propagation. We find that for the

Analyzer ignores all MPI functions calls and OpenMP
primitives.

(3) crucial variables are updated inside loops, and related
loop bodies will not be skipped because of false initial
loop conditions.

Analyzer works on LLVM IR code, a light-weight and low-
level intermediate representation of programs. This makes
LADR relatively independent of programing languages uti-
lized by scientific applications, and it can support a majority
of existing scientific applications (if not all) that are normally
written in either C/C++ or Fortran. In LLVM IR code, each
memory access is explicitly issued through either a load in-
struction (LoadInst) to read data from a memory location, or
a store instruction (StoreInst) to update a memory location.
Therefore, each assignment operation in source codes would
correspond to several LoadInst instructions to read data for
RHS operands, a set of related computation instructions, and
one StoreInst instruction to update the memory with final
result, as shown in Figure 6.

3.3.1 Extracting data-flow among variables. Based on the
above observation, Analyzer extracts data-flow among cru-
cial variables by analyzing StoreInst instructions, which have
two operands named as source and destination, simply as-
suming that the array in destination (write to) covers arrays
involved in source. For each operand of StoreInst, LADR lever-
ages def-use chain to backwardly extract involved variables
through looking for LoadInst. There are 5 possible situations:
(1) the source operand is a pointer, as shown in line

23 in Figure 3. In this case, Analyzer considers the
destination operand as an alias to the source operand,

scientific simulations we have studied, which are largely spacially decom-
posed, communication abstractions don’t add dependencies between state
variables that are not already present in the code. Second, while it is possible
for SDCs to be communicated between processes, they will generally be
picked up wherever they cause a significant disruption to expectations since
the protector is embodied in every MPI rank. So these primitives get no
special handling in LADR.
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1 %2 = load i32* %i, align 4
2 %idxprom = sext i32 %2 to i64
3 %3 = load double ** %x.addr , align 8
4 %arrayidx = getelementptr inbounds double* ←↩

%3 , i64 %idxprom
5 %4 = load double* %arrayidx ,align 8
6 %5 = load i32* %i, align 4
7 %idxprom1 = sext i32 %5 to i64
8 %6 = load double ** %y.addr , align 8
9 %arrayidx2 = getelementptr inbounds double*←↩

%6 , i64 %idxprom1
10 %7 = load double* %arrayidx2 ,align 8
11 %add = fadd double %4, %7
12 %8 = load i32* %i, align 4
13 %idxprom3 = sext i32 %8 to i64
14 %9 = load double ** %z.addr , align 8
15 %arrayidx4 = getelementptr inbounds double*←↩

%9 , i64 %idxprom3
16 store double %add , double* %arrayidx4 , ←↩

align 8

Figure 6: LLVM IR Code for the loop of add

and maintains an pointer-to-pointer aliasing map for
the ongoing analyzed function for future reference.

(2) the source operand is an array element and the
destination variable is a scalar variable, as shown
in line 20 in Figure 3. In this situation, Analyzer will
maintain a scalar map for the ongoing analyzed func-
tion to temporary record propagation path information
among scalar variables and arrays for future reference,
since it could define an indirect propagation among
crucial variables.

(3) the source operand is a scalar variable and the
destination variable is an array element, as shown
in line 9 (factor) in Figure 3. For this case, Analyzer
will first check the scalarmap using the source operand.
If there exists an entry, it will retrieve related source
arrays from the scalar map, and record the propagation
information between the destination and each source
array into propagation map.

(4) both source and destination operands are scalar
variables, as shown in line 13 in Figure 3. This is
similar to case 3. LADR will first check whether the
source operand has an entry in the scalar map; if yes, it
will register the destination operand into the map with
the same content. Otherwise Analyzer will simply
skip the instruction.

(5) both source and destination operands are array
elements, as shown in line 4 in Figure 3. This case
defines a direct propagation among crucial variables.
The Analyzer will simply register the propagation in-
formation in the propagation map (aliasing map would
be checked to retrieve the actual variables before the
actual registration).

3.3.2 Function Calls. To build the data-flow graph for
whole application, LADR needs to handle function calls. For
each CallInst, Analyzer takes following actions depending
on the type of the callee function:
(1) memory allocations, e.g., malloc/alloc. For eachmem-

ory allocation, Analyzer assigns an id internally to
virtually represent the allocated memory region and
registers it in global variable tables.

(2) basic math computation, e.g., sqrt and max . For
these functions, Analyzer extracts data-flow informa-
tion among their arguments and return values lever-
aging knowledge of library APIs.

(3) application defined functions. For these functions,
Analyzer will dive into function bodies to analyze
each StoreInst, essentially inlining the subroutine to
handle parameters and return values.

3.3.3 Conditional Control/Data Flow. Generally the Ana-
lyzer takes a conservative approach to conditional or run-
time determined control and data flow, e.g. evaluating both
paths in an if expression and taking the superset of those
contributions as the overall data flow. This is most effectively
done by simply ignoring the branch operators in the LLVM
IR code.

Overall. To elaborateAnalyzer clearly, we take the exam-
ple code in Figure 3 to illustrate the entire analyzing process.
Analyzer starts analysis in the main function. It considers
all malloc statements as defining variables. For the first add
function call statement (line 18), it inlines add by aliasing x
to a, y to b, z to c, and s to size. All references to x, y, z and
s are replaced with a, b, c, size, so we will get propagation
paths among c, a and b instead of z, x and y. For line 20, we
will get sum covers c. Since sum is scalar, it will be registered
in scalar map. In line 21, since sqrt is a standard mathemati-
cal function, we can easily get that sum covers itself. Then
for mul function call, it will do the inline procedure as did to
add in above. In line 4, we will get propagation paths among
d, b and sum. Since sum is now in scalar map with a prop-
agation path from c, we will update the entry for d in the
propagation map with an edge from c. The above procedures
will be repeated for the following function calls.

3.4 Protector: anomaly-based detection
LADR Protector shares a similar detection approach to ex-
tant anomaly-based detection methods[3, 14] (see Section 2).
However, it distinguishes itself in two aspects: 1) it groups
data points for each monitored variable, and works on the
feature array constructed by extracting a data feature from
each group. 2) it detects SDCs with two metrics from the
perspectives of the number of contaminated data points and
error magnitudes. LADR currently supports three data fea-
tures for grouping, including mean, standard deviation, and
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Figure 7: Predictability (measured with pacf) of a
point and the group (constructed with 8-neighbor
points) in which the point resides. The mean value of
the group is used.

entropy, as well as three predictors: Linear Curve Fit (LF),
Quadratic Curve Fit (QF) (from [14]), and AutoRegression
(AR). LADR seeks to select the best predictor, feature, and
grouping strategy based on a learning window, such as the
first few time steps of a run assuming there are no SDCs in
these steps.

3.4.1 Data points grouping. Crucial variables of scien-
tific applications are typically huge arrays with millions or
even billions of data points, therefore, it would still incur
non-negligible runtime and memory overheads with current
point-wise predictions, since they need to preserve the his-
tory data and predict the value for each data point at each
time-step. LADR proposes to mitigate this issue by grouping
data points, which is motivated by the observation that a
single SDC could contaminate multiple data points (see Sec-
tion 3). Intuitively, data points grouping could increase the
potential of diluting SDCs if the group size is too large, there-
fore reducing fault coverage. Based on the intuition that the
global/regional state could be more stable and predictable
than the point-wise state (as shown in Figure 7), LADR em-
ploys a heuristic-based grouping algorithm to achieve a bal-
ance between fault coverage and resulting overheads. In
this heuristic-based grouping algorithm, the predictability
for each data point(Cp ) and the global array (Cд) are first
calculated with partial correlation function (pacf), and data
points are now roughly divided into two groups based their
predictability: 1) points whose Cp are larger than Cд ; and
2) points whose Cp are less than Cд . For points whose Cp
are larger than Cд , they are simply divided into groups with
minimum group size, which is a user-specified parameter
(we set it as 8 in our experiments). For points whose Cp are
smaller thanCд , they are merged with their neighbors recur-
sively until the predictability of the group is around Cд or
group size is larger than a user-specified maximal group size.

For each group, the feature leading to higher predictabil-
ity is selected as representative of the group. In addition,
domain-specific knowledge can be leveraged for grouping
too. For example, in MD codes, the velocity information (V)
of each atom is encoded with three data points, representing
velocities in the x , y, and z directions. Thus, a grouping strat-
egy that calculating the absolute velocity (

√
x2 + y2 + z2) can

be applied, which could reduce the overhead by 3×. Such
domain-specific grouping can replace the default heuristic-
grouping algorithm or be applied together with the heuristic
grouping algorithm.

3.4.2 SDC detection. As in [14], LADR detects SDCs by
checking the value of monitored variables at the end of each
time-step. It works on prediction errors calculated with Eq. 1
(below) for each data point, where P is prediction value,O is
observation value and i refers to a data point. Since we have
no knowledge about the correctness of observation value,
historic mean values of data points are used in our estimates.

E(i) = (P(i) −O(i))/mean(hist(i)) (1)
Afterward, for each data point, the prediction error range,

[mean(E(i) − θ × std(E(i)),mean(E(i)+ θ × std(E(i))], is con-
structed based on its history prediction errors. θ is initialized
with a constant value (we set it to 8 in our experiments), and
is updated at runtime with the following equations, where γ
is the actual up bound of history prediction errors:

θ =

{
θ+γ
2 , i f γ < 0.5 ∗ θ

1.5γ , i f γ > θ
(2)

If the prediction error of a specific data point is out of its
range, an SDC is assumed for the point. It is, however, too
strict to use the result of a single point to indicate the exis-
tence of SDCs, and would incur significant false positives due
to prediction variance. To mitigate this issue, LADR detects
SDCs based on two metrics. First, for each time-step, we cal-
culate the ratio of data points with out-of-bound prediction
errors. An SDC is reported only when the ratio is larger than
a threshold. Currently, the threshold was derived statistically
from the learning window. During the learning phase for
selecting best predictor, feature and grouping strategy, the
out-of-bound ratio R for each time step was also recorded.
And the threshold was set asmean(R) + 5 ∗ std(R), or 0.08%
in our experiments. This metric is designed based on our
second observation, and it is to detect SDCs that could con-
taminate a large number of data points. Secondly, LADR also
checks the statistics (mean and standard deviation) of predic-
tion errors (error magnitudes across all data points) for each
time-step. In normal cases, we observe that these statistics
are within small bounds, which can be constructed based on
the historic data using the same method for constructing pre-
diction error bounds. If a statistic associated with the current
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1 GE_Init(MPI_COMM);
2 GE_Protect(char varname , void *var , int ←↩

data_type , size_t size , int buf_size , ←↩

float ratio , float impaction);
3 GE_Snapshot ();
4 GE_PrintResult ();
5 GE_Finalize ();

Figure 8: GE Protector API

step is out of the normal bound, an SDC is reported also. This
metric could help to detect SDCs causing significant errors
but affecting too few data points. The recovery procedure
will be invoked if an SDC is reported by either one of these
two metrics.3

4 IMPLEMENTATION
We implemented LADR with two separate components: a
LLVM-based compiler-framework—Analyzer , and a runtime
protector library—GE. In particular we implemented An-
lyzer as an independent LLVM pass (∼ 1688 LOC) based on
LLVM-3.5.2. It analyzes unmodified source code of an appli-
cation to build data-flow graph among crucial variables. We
leverage Clang or DragonEgg to compile C/C++ or Fortran
codes into LLVM IR codes (.ll file). Our current prototype of
Anlyzer only generates the data-flow graph, and the sink
variables are manually/visually selected by simply picking
destination node in the generated graph, e.g., d in Figure 4.
We hope to fully automate the entire process in future work.

The GE runtime is developed based on GSL library. Sim-
ilar to [14], it exposes users 5 API routines as shown in
Figure 8. GE_init is inserted to the beginning of the applica-
tion right after MPI_Init. GE_Protect is inserted before the
main loop for each protected sink variable. Each sink variable
can be assigned with separate parameters according their
data features. GE_Snapshot is inserted at the end of main
loop, right before output routine. Finally, GE_PrintResult
and GE_Finalize are expected to be inserted right before
MPI_Finalize.

5 EVALUATION
We evaluated LADR through fault-injection experiments. In
this section, we will first introduce the evaluation methodol-
ogy, and then present evaluation results.

5.1 Evaluation Methodology
We evaluated LADR on a cluster with 32 nodes. Each node
is equipped with a 12-core Intel(R) Xeon(R) X5660 (2.80GHz)
CPU, 24GB of memory and Mellanox Technologies MT26438

3This paper doesn’t propose new recovery methods, and we assume check-
point/restart can be used here.

InfiniBand card. Similar to thework in [14], we focused on un-
expected data changes (SDCs) caused by transient faults, e.g.,
bit-flips of the data. We simulated SDCs through application-
level fault injections as did in study [11]. We implemented a
simple fault injection tool based on GDB’s MI interface for
this purpose. For sake of easy analysis, the tool injects faults
to one MPI rank during each run of applications. In this tool,
a fault is identified by a tuple with 4 elements: (iteration,
execution point, target, fault):
• iteration and execution point together determine
when the fault will be injected.
• Execution point is represented in form of file:line.
• target determines where the fault will be injected. It
is a specific memory location of applications.
• fault determines how to corrupt the value of the tar-
get. Random bit-flips are used in our evaluation.

We injected faults directly into applications’ memory space
since it behaves closer to SDCs. We performed one injec-
tion per run, and contaminated one data point per injec-
tion. ∼6000 injections in total were performed. We compared
LADR to the “Reference" scheme, in which all of crucial vari-
ables in our setups were monitored and point-wise predictor
was employed. In contrast, LADR only monitored the identi-
fied sink variables (shown in Table 4) and also applied the
data point grouping technique. For the “Reference” scheme,
the tool developed in [14] was used. We compared them from
3 aspects:
(1) fault coverage (FC). It measures how many SDCs are

detected by an SDC detector. It is defined by number
of detected SDCs over the total injections that contam-
inated values of crucial variables.

(2) false positive (FP). A FP happens when an SDC is mis-
takenly reported for a fault-free time-step. It is defined
as the number of mistakenly reported time-steps over
the total number of iterations under the evaluation.

(3) overhead. It contains runtime overhead incurred by pre-
dictions, and memory overheads incurred for storing
history data sets.

5.2 Evaluated Workloads and Baselines
We evaluated LADR with the four scientific workloads in
Table 2. In our evaluation, we set up the baselines for GTC-
P and POP with 6 crucial variables, and for miniMD and
LAMMPS with 3 crucial variables. The data size of each cru-
cial variable is shown in Table 3. LADR’sAnalyzer identified
1 sink variable for each evaluated workload, as shown in Ta-
ble 4. After sink variables were determined, application codes
were modified to monitor the variable using the GE library.
The modification effort involved 25 lines of code changes for
GTC-P, miniMD and LAMMPS, as well as 45 lines of code
changes for POP, which was minor and acceptable.
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Table 2: Evaluated scientific workloads

Workloads Descriptions crucial variables
Gyrokinetic Toroidal
Code–Princeton (GTC-
P)

C program. A 2D domain decomposition version of the GTC global gyroki-
netic PIC code for studying micro-turbulent core transport. It solves the
global, nonlinear gyrokinetic equation using the particle-in-cell method.

6 particle data vari-
ables: zion0, zion1,
zion2, zion3, zion4,
zion5

Parallel Ocean Pro-
gram (POP)

Fortran program. A 3D ocean circulation model designed primarily for
studying the ocean climate system. It was used to perform high resolu-
tion global ocean simulations to resolve meso-scale eddies that play an
important role in the dynamics of the ocean.

6 TAVG output vari-
ables: uvel, vvel, salt,
temp, rho, salt2

LAMMPS C++ program. a classical molecular dynamics code, and an acronym for
Large-scale Atomic/Molecular Massively Parallel Simulator developed at
Sandia National Laboratories

3 molecular/atom
property variables: X,
F, V

MiniMD C++ program. A simple, parallel molecular dynamics (MD) code developed
at Sandia National Laboratories

3 molecular/atom
property variables: X,
F, V

Table 3: Per time-step size of evaluated variables
GTC-P POP miniMD LAMMPS

name size name size name size name size
zion0 25280 KB TEMP 5750 KB V 16384 KB V 16384 KB
zion1 25280 KB SALT 5750 KB F 16384 KB F 16384 KB
zion2 25280 KB SALT2 5750 KB X 16384 KB X 16384 KB
zion3 25280 KB UVEL 5750 KB – – – –
zion4 25280 KB VVEL 5750 KB – – – –
zion5 25280 KB RHO 5750 KB – – – –

5.3 LADR Analyzer cost
As shown in Table 4, Analyzer worked more efficiently on
GTC-P, miniMD and LAMMPS than on POP. It roughly took
2 ∼ 3 minutes for analyzing GTC-P and miniMD, ∼ 18
minutes for analyzing LAMMPS, but nearly 3 hours for POP.
We attribute this issue to two reasons: 1) a larger code base
for POP (around 3× of GTC-P and 10× of miniMD), and
2) inefficient IR code generation for Fortran. During our
evaluation, We found that the IR code generated from the
Fortran programwas not as succinct as the IR generated from
C/C++. It introduced significantly more branches and virtual
functions, which are not shown in the original source code.
These features, especially branches, complicate the analysis
of Analyzer because it needs to evaluate each potential
execution path. With the ongoing project FLANG, a native
Fortran front-end for the LLVM framework, we expect this
issue would be mitigated.

Table 4: Analyzer cost
Apps Source code (LOC) LLVM IR (LOC) Sink variables Analysis time
GTC-P 18,453 61,049 moments(1775KB) 3 mins.
miniMD 4,167 28,028 V(16384 KB) 2 mins.
LAMMPS 415,084 1,655,405 V(16384 KB) 18 mins.

POP 59,678 478,311 TRACER(575KB) 189 mins.

5.4 Fault coverage
Fault coverage is a major metric for measuring the effective-
ness of SDC detectors. While LADR aims to optimize the
runtime and memory overheads, it should not significantly
sacrifice fault coverage.

Figure 9 compares the fault coverage of LADR to the “Ref-
erence" scheme for the evaluated workloads. Results of us-
ing different grouping strategies are also reported. “LADR-
grouping(H)” shows grouping data points leveraging the
proposed heuristic grouping algorithm, “LADR-grouping(S)”
divided data points evenly using the same number of groups
as in “LADR-grouping(H),” and the “LADR” label shows sim-
ple point-wise monitoring of the sink variable. As shown
in the figure, “LADR” achieved comparable fault coverage
as compared to the “Reference" scheme, reducing overhead
by monitoring fewer variables at a cost of just a 1% ∼ 4%
decrease in fault coverage. Meanwhile, the heuristic group-
ing algorithm boosts its performance significantly, since it
improved the predictability of the feature data, therefore
allowing a more accurate detection model. As an example,
Figure 10 presents the impact of our heuristic grouping al-
gorithm on the predictability for miniMD. It shows that, the
heuristic grouping algorithm effectively removes the data
points with less predictability (comparing Figure 10(a) and
Figure 10(b)), but didn’t blindly increase the group size 10(c).
As shown in Figure 1(b), low predictability would lead to
lower fault coverage since a large bound was required for
tolerating false positives. These results suggest that, by lever-
aging data-flow information, it’s unnecessary to monitor all
crucial variables to protect scientific applications from SDCs,
and heuristic grouping algorithm can achieve a better bal-
ance between group size and prediction accuracy than static
grouping.
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Figure 9: Fault coverage comparison. H – heuristic grouping; S – static grouping

(a) predictability distribution–point (b) predictability distribution–group (c) group size distribution

Figure 10: Impacts of heuristic grouping. The constructed feature data ismore predictable among time-steps.Most
groups have a few data points, while static grouping has 245 points for each group. Due to limited space, only the
data for miniMD is plotted. Other workloads share a similar observation.

5.5 False positives
The false positive rate is another important metric for mea-
suring the effectiveness of SDC detectors. A false positive
would invoke the unnecessary recovery scheme, potentially
incurring significant overheads. Therefore, a low false posi-
tive rate is required from SDC detectors. Table 5 compares the
false positive rates of LADR against the “Reference" scheme.
We measured false positive ratio basing on first 1000 time-
steps of workloads. LADR achieved slightly lower false posi-
tive rate mainly because it monitored fewer variables.

Table 5: False positive rate

LADR Baseline
GTC-P 0.2% 0.5%
POP 0.3% 0.7%

miniMD 0.8% 1.1%
LAMMPS 0.7% 0.9%

5.6 Runtime and memory overheads
In this section, we evaluated the overheads of LADR. We
compared it to the “Reference" scheme and to baseline runs
in which no protection is applied to the workloads. Figure 11

presents their overheads normalized to the baseline for each
evaluated workload. By monitoring sink variables, LADR re-
duced runtime overheads by 21% for GTC-P, 25% for POP, 22%
for miniMD and 57% for LAMMPS. It also reduced memory
overheads for them respectively by 38% for GTC-P, 39% for
POP, 24% for miniMD and 28% for LAMMPS. This is mainly
because it monitored fewer variables. For GTC-P and POP, it
is also because the selected sink variable is smaller than the
crucial variables. In addition, the grouping algorithm divided
GTC-P into 5230 groups, POP into 3270 groups, miniMD
into 4289 groups, and LAMMPS into 10367 groups for data
points in each node. This further reduced memory overheads
to around 1% for these workloads and runtime overheads
to 2.96% for GTC-P, 1.22% for POP, and 9.16% for miniMD,
and 11.8% for LAMMPS. These results show that monitoring
sink variables can significantly reduce overheads of anomaly-
based SDC detectors, and data points grouping can further
reduce the overheads to a negligible level.

In conclusion, the evaluation results show that LADR sig-
nificantly reduced runtime and memory overheads as com-
pared with prior methods without sacrificing fault coverage.
It would be a promising method for scientific applications
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(a) GTC-P (b) POP (c) miniMD (d) LAMMPS

Figure 11: Runtime and memory overheads of LADR with sink variable (S) and data points grouping (G)

that can tolerate some numerical disturbance while being
protected from larger SDCs in the majority of their data.

6 CONCLUSION
SDC is an increasingly important concern for the reliability
of exascale systems. It is harmful to scientific applications,
since it could lead to incorrect scientific insights. Validating a
given simulation run to be free of SDCs is a very challenging
problem and an effective solution must achieve high fault
coverage with limited overheads. In the absence of such
validation, the integrity of high fidelity simulations remains
questionable on very large scale systems that are prone to
such errors.
In this paper, we presented and evaluated LADR, a light-

weight application-level approach to protect applications
from SDCs using techniques based on compiler analysis.
It improves extant anomaly-based techniques by focusing
on minimizing runtime and memory overheads primarily
through exploiting correlation among crucial variables and
data points. We evaluated LADR using application-level fault
injection experiments. Results suggest that LADR can pro-
tect application from influential SDCs with no more than
8% overheads. For two of evaluated workloads, it only in-
curs around 2% overheads. LADR demonstrates that it is
unnecessary to apply anomaly detection techniques on all
crucial variables. Instead, a subset of crucial variables can be
identified employing compile-time data-flow analysis.

In future work, we plan to improve LADR by undertaking
a more detailed array data-flow analysis and by leveraging
the flow properties of amplification of errors.
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