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Abstract
Modern computing platforms tend to deploy multiple GPUs

on a single node to boost performance. GPUs have large com-

puting capacities and are an expensive resource. Increasing

their utilization without causing performance degradation

of individual workloads is an important and challenging

problem. Although services such as NVIDIA’s MPS allow

multiple cooperative kernels to simultaneously run on a sin-

gle device, they do not solve the co-execution problem for

uncooperative, independent kernels on such a multi-GPU

system. To tackle this problem, we propose CASE — a fully
automated compiler-assisted scheduling framework. During
the compilation of an application, CASE constructs GPU

tasks from CUDA programs and instruments the code with

a probe before each one. At runtime, each probe conveys

information about its task’s resource requirements such as

memory and the number of streaming multiprocessor (SMs)

needed to a user-level scheduler. The scheduler then places

each task onto a suitable device by employing a policy appro-

priate to the system. In our prototype, a throughput-oriented

scheduling policy is implemented to evaluate our resource-

aware scheduling framework. The Rodinia benchmark suite

and the Darknet neural network framework were used in our

evaluation. The results show that, as compared to existing

state-of-the-art methods, CASE improves throughput by up

to 2.5× for Rodinia, and up to 2.7× for Darknet on modern

NVIDIA GPU platforms, mainly due to the fact that it im-

proves the average system utilization by up to 3.36× and the

job turnaround time by up to 4.9×. Meanwhile, it limits indi-

vidual kernel performance degradation within 2.5%. CASE

∗
Both authors contributed equally to the paper.

†
This work was done when the author was a PhD student at Georgia Tech

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9204-4/22/04. . . $15.00

https://doi.org/10.1145/3503221.3508423

achieved peak system utilization of 78% for Rodinia and 80%

for Darknet on a 4×V100 system.
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1 Introduction
General-purpose graphics processing units (GPGPUs) have

become essential components in modern data centers and

high-performance computing (HPC) systems. They provide

the massive computing capacity required by modern ma-

chine learning and data analytics applications, or needed

by large-scale high-fidelity scientific simulations. In the lat-

est release (Jun 2021) of the TOP500 list [22], 60% of HPC

systems are equipped with high-end GPU devices to deliver

high-peak system performance. For many of these systems,

multiple GPU devices are deployed in each computing node.

An example is the Summit supercomputer, in which each

compute node has 6 NVIDIA Tesla V100 GPUs.

However, how to efficiently utilize these high-power GPU

resources remains an open research problem in many con-

texts. While certain performance-critical workloads may

require dedicated GPUs and are able to fully saturate these

high-end devices, many others do not utilize these resources

continuously to their maximum capacities [25]. Per a dis-

cussion with scientists from Los Alamos National Labora-

tory, each of their scientific workloads typically only uses

∼ 30% of GPU resources because of “sequential-parallel"

computing patterns and varying kernel sizes, leaving the

majority of computing resources under-utilized and wasted.

This trend was also observed in machine learning workloads

in data centers [26]. One of the major reasons for under-

utilization of resources is that over the generations, GPUs

have tremendously grown in terms of their memory capaci-

ties and amount of compute resources (SMs). For example,

in two recent generations, Nvidia V100 GPUs had 16/32GB

amount of memory and 5,120 CUDA cores whereas A100s

have 40/80GB memory and 6,912 CUDA cores. The prob-

lem is exacerbated because new generations of GPUs are

expensive, both in terms of cost and power consumption. A

high-end NVIDIA GPU device could cost as much as 2 to 5×

https://doi.org/10.1145/3503221.3508423


that of a high-end Intel Xeon CPU, and, in data centers, a

GPU virtual machine instance could be 10× more expensive

than a regular one. These practical observations demonstrate

the necessity of efficient mechanisms to share GPUs among

different workloads [6–8, 20, 23, 25, 26], thereby increasing

utilization, saving on energy consumption, and improving

the cost-efficiency as well as throughput for these systems.

In recent generations of GPUs (e.g. Volta), Multi-Process

Service (MPS) helps mitigate this issue. It can facilitate co-

execution of kernels from different processes. However, it

is designed for cooperative applications (e.g. MPI jobs) on a

single device. It also cannot schedule kernels across different

GPU devices according to devices’ statuses. Programmers’

knowledge and efforts are required to schedule kernels from

different MPI ranks and explicitly manage kernel-device pair-

ings to avoid device overloading. Thus, even for a cooperative

multi-process application, programmers have to explicitly

designate the device for each kernel launch and its related

CUDA operations via cudaSetDevice. If there is no such
call in the application, the CUDA runtime will bind every

CUDA operation to device0 by default.

Making these scheduling decisions pre-runtime is not even

a viable solutionwhen applications from different users share

the devices. Such uncooperative jobs have no knowledge of

the resource requirements and dynamic concurrency of other

executing processes. In such scenarios, some GPU devices

could be significantly overloaded while others are idle. This

could slow down the execution of individual applications,

even though the overall system is quite under-utilized.Worse,

if the memory capacity is exceeded (which MPS doesn’t pro-

tect against), it could cause processes to crash due to “out-of-

memory” (OOM) errors, which is disastrous for long-running

applications. Thus, dynamic sharing of multiple GPUs (that
reside inside a single, high-performance node) among un-
cooperative and independent workloads in an efficient and

memory safe manner remains an unsolved problem.

1.1 Motivating Example
Figure 1 illustrates the issue on a 2-GPU system, where each

GPU has 56 SMs and 16GB DRAM. It assumes there are 2

applications; each has 2 CUDA kernels that can be executed

in parallel; and each kernel needs different GPU resources.

If the system is dedicated to each application, it is easy to

achieve good performance by simply mapping 𝑘1 to device

0 and 𝑘2 to device 1 for 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛1, and mapping 𝑘3 to

device 0 and 𝑘4 to device 1 for 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛2. But each de-

vice is under-utilized under such an allocation. By closely

examining the resource requirements for each kernel, one

can see that it is possible to share the system between these

two applications without performance degradation, since

their total resource requirements are within the system ca-

pacity. However, the previous statically determined schedule

(mapping) will not work in this shared scenario, because the

total SM requirements of 𝑘1 and 𝑘3, and the total memory

requirements of 𝑘2 and 𝑘4, exceed the capacity of a device.

Though overloading SM resources could cause performance

interference and degradation, overloading memory will lead

to OOM errors and application failures. A good solution is to

co-locate 𝑘1with 𝑘4 on one device and 𝑘2with 𝑘3 on another

device. However, it is impossible to make such a decision

statically, and a dynamic, runtime solution is proposed in

this work. The proposed method manages GPU resources

uniformly and allocates them at each kernel launch per re-

quest. Then the kernel will be scheduled to an appropriate

device based on its resource requirements and the status

of each device to ensure memory safety and minimize the

performance interference among workloads.

1.2 The Proposed Solution
The above example and the limitations of MPS imply a need

for system-level mechanisms to coordinate the execution of

kernels from uncooperative processes (e.g. processes from
different users) on a set of GPU devices, thereby increas-

ing the resource utilization, saving on energy consumption,

and improving cost-efficiency — all while incurring negligi-

ble performance interference for individual workloads. Our

approach to this challenging problem is CASE, a compiler-

assisted scheduling framework which uniformly manages

and schedules GPU resources among uncooperative work-

loads. CASE is fully automated and works without any man-

ual effort or changes to application source code. It leverages

the compiler to construct GPU tasks, which are basic schedul-

ing units for the runtime system. Briefly, a GPU task contains

one or more kernel launches, as well as related GPU oper-

ations, e.g. memory allocations and initialization, that are

required to execute the underlying kernel(s). A GPU task

is generated through both static analysis by the compiler

and a lazy runtime by bundling together all the kernels that

share underlying memory or exhibit memory dependencies.

Obviously, each GPU task contains a complete set of GPU

operations required to finish a GPU computation, and thus it

can be scheduled and executed on any GPU device without

breaking its correctness. For each GPU task, a probe is stati-

cally inserted into its host-side code to gather and convey

the task’s resource requirements (such as memory footprints

and number of SMs) to a user-level scheduler at runtime

before the task is executed. The scheduler then dynamically

places the GPU task on an appropriate device based on the

task’s resource requirements and the device status in terms of

available memory and SMs. Different scheduling policies can

be deployed in the proposed framework to target different

computing environments. In this paper, we will focus on the

design of the framework itself, applying it to a throughput

scheduling policy. To the best of our knowledge, this is the

first work that aims for a fully automated, efficient schedul-

ing framework of a multi-GPU system among uncooperative
applications.
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Figure 1. Two uncooperative processes can be scheduled independently (a and b), but to boost system utilization and cost-

efficiency, they require more than naive scheduling when sharing devices (c).

1.3 Contributions
In particular, this work makes the following contributions:

1. We propose a GPU scheduling framework to uniformly

and transparently manage GPU resources for applica-

tions. It enables independent, uncooperative applica-

tions from different users to simultaneously execute

on a set of shared devices safely (with no OOM errors)

and with almost no performance degradation to each

individual workload.

2. We devise a compiler-assisted method to construct

GPU tasks, analyze their resource requirements (e.g.

global memory and SMs), and insert probes to convey

this information to the scheduler at runtime. The con-

structed GPU tasks can be dynamically bound to any

GPU device at runtime, yielding fully automated task

scheduling among devices.

3. We implement a prototype of CASE on top of NVIDIA

GPUs, the CUDA library and the LLVM framework,

and evaluate it in a throughput-oriented computing en-

vironment. An efficient and fast throughput-oriented

scheduling policy is implemented to quickly sched-

ule a GPU task on an appropriate device. By taking

advantages of CASE-furnished details about tasks’

resource requirements and the devices’ statuses, the

scheduler guarantees the task to be executed efficiently

and safely (without OOM errors) and without over-

loading devices. A net result is that it improves the

system throughput by over 2×, and system utilization

by 1.59 ∼ 3.36×.
The rest of paper is organized as follows: Section 2 dis-

cusses the related state-of-the-art in terms of research. Sec-

tion 3 and Section 4 present the design and prototype of

CASE. Evaluation results are then presented in Section 5.

Finally, Section 6 and Section 7 discuss the directions of our

future work and conclude the work.

2 Related Work
The importance of GPU sharing is widely recognized in

recent research. To the best of our knowledge, this work

is the first to tackle this problem for generic workloads on

multi-GPU systems in a fully automated manner with no

user intervention, no OS or system changes.

Several frameworks [2, 14, 19, 23, 25, 29] are proposed to

enable preemption onGPUs through kernel slicing. FLEP [25]

is an example. It slices long-running kernels into multiple

short-running sub-kernels. Thus GPU applications can be

preempted when sub-kernel invocations are finished. How-

ever, these frameworks are designed to solve a different prob-

lem that occurs in a different system setting. They are mainly

designed for single-GPU systems and tackle the problem of

how to do effective preemption to regain resources (e.g. SMs)

for scheduling higher priority processes. In contrast, CASE
solves the problem of how to pack GPUs effectively across

all devices in a multi-tenancy, multi-GPU system, which is

not addressed by these systems. However, the idea of pre-

emption proposed in FLEP can be coupled with our work to

tackle latency-critical and QoS-sensitive applications.

Gdev [11] and PTask [17] are two OS-based approaches.

They design a set of OS abstractions to integrate GPU run-

time support into the OS and provide first-class GPU resource

management schemes for multitasking systems. Similar to

FLEP, they are designed for QoS-critical workloads, and only

target a single device, which is a different setup as targeted

by CASE. In addition, these methods would require signif-

icant changes to basic system software stacks, which is a

major barrier to the adoption in production systems. PTask

even needs a new programming model, implying a need of

significant code changes to existing applications. In contrast,

CASE offers full automation with no changes to an applica-

tion or any part of the GPU software stack by providing a

user-level scheduler providing a basis for a practical system.

SchedGPU [15] enables the sharing of a GPU device among

independent workloads. It avoids OOM errors by interpret-

ing memory requirements of workloads. SchedGPU differs

fromCASE in several ways. First, it requires the programmer

to add library calls that pass the applications’ memory needs.

This process can not only be daunting but is also error-prone.

Second, it takes into account only memory, which as we will

show in the neural network experiments, can cause slow-

downs if compute resources are not properly managed both

within and across GPUs. Lastly and most importantly, it is

again designed for a single-device environment, and only

has the capability of suspending or continuing a CUDA op-

eration. It has no ability to schedule tasks among devices to

balance the device utilization, which is provided by CASE.



On a multi-GPU system, straight-forward device mapping

is the widely utilized method to allocate GPU devices among

applications. Slurm [27] is an example. It manages job queues

and ensures that when an independent job runs on a node,

the node is provisioned with a sufficient number of GPUs

for that job. Kubernetes employs a similar approach. Going

beyond this, Marble [9] attempts to find an optimal number

of GPUs for each Deep Learning (DL) workload, based on

their profiled scalability. Essentially, in these frameworks,

each device is dedicated to only one workload. They do not

address the problem of sharing devices among independent
and uncooperative workloads. Gandiva [26] is a cluster-wide
GPU scheduler for DL training workloads. It enables two

different training workloads to run on the same set of devices

without performance interference to each other. However,

similar to other machine learning frameworks, e.g. mxnet [5],

Gandiva heavily relies on DL properties, and cannot be ap-

plied to generic workloads such as Rodinia. CASE not only

supports DL tasks but generic workloads, as well.

VirtCL [28] introduces a new abstraction layer atopOpenCL.

For any applications that may share the system, VirtCL re-

quires programmers to rewrite them using 5 abstractions.

Each shared and non-shared object must be passed through

an API which could be error-prone.CASE, on the other hand,
is a fully automatic framework that works with off-the-shelf

CUDA code with no changes. The two are also focused on

different problems. VirtCL attempts to solve memory incon-

sistency with distributed shared memory (DSM) and device

contention with a history-based scheduler. It implements

DSM for OpenCL with a 6% overhead. CASE targets through-

put (~2.5× gain) and device utilization (up to 3.36× gain)

with negligible kernel slowdown (2-2.5%).

Finally, NVIDIA’s multi-instance GPU (MIG) [13] is a new

hardware feature in A100s to partition a large GPU into

multiple physically isolated small GPUs. Each partition can

be considered a small GPU device and can be assigned to

an application. CASE can inter-operate with small changes

with MIG especially in terms of packing jobs inside each of

the MIG managed partitions, which is our future work. This

is so since the key aspects that CASE relies on are the CUDA

compute and memory needs generated by the probes, and

the scheduling schemes can be adapted accordingly. Further-

more, where isolation among jobs is not a major requirement,

under certain scheduling scenarios, CASE offers more flexi-

bility and perhaps better packing possibility than MIG since

there are no restrictions in terms of partitions that dictate co-

execution of jobs. For example, on an A100 GPU (40GB), one

can pack 13 jobs under MPS if each job needs 3GB, whereas

it can only provide at most 7 partitions under MIG.

3 The Design of CASE
As shown in Figure 2, CASE consists of three main com-

ponents: a compiler pass, lazy runtime, and scheduler. The

Scheduler

CUDA Runtime

Lazy Runtime
Compiler Pass

The framework

App 1 App 2 App 3 App 𝑘

Figure 2. High-level framework design.

compiler pass, coupled with the lazy runtime, constructs

GPU tasks and instruments applications with one probe per

task. At runtime, the probes convey tasks’ resource require-

ments to the scheduler before they execute. The scheduler

employs a scheduling policy to assign GPU tasks to appro-

priate devices based on device statuses and probe data.

3.1 GPU Tasks
The “GPU task” is the basic scheduling unit in CASE. It is a
collection of GPU operations, containing one or more kernel

launches as well as a set of preamble and epilogue opera-

tions that are necessary to facilitate the correct execution

context for the kernel(s). The preamble operations allocate

(e.g. cudaMalloc) and initialize (e.g. cudaMemset) the
memory space on the target device, and the epilogue oper-

ations save the computing results (e.g. cudaMemcpy) and
free the allocated resources (e.g. cudaFree). All of these
related GPU operations should be issued to the same device,

therefore forming a GPU task. An example task is shown in

Figure 3, in which the code from lines 22 ∼ 39 belongs to a

GPU task for adding two vectors. The preamble operations

(lines 22 ∼ 28) first allocate memory and prepare the data;

then the kernel is launched (line 32) to do actual computa-

tions; and finally the epilogue operations (lines 35 ∼ 39) save
the results and release the occupied resources.

3.1.1 Task Construction. CASE leverages a compiler

pass, coupled with the lazy runtime, to construct GPU tasks

and gather their resource requirements. It works on the

LLVM IR of applications, and therefore can support appli-

cations programmed with various programming languages

supported by LLVM. Essentially, CASE builds GPU tasks by

searching for kernel launches and related GPU operations

leveraging the def-use chain information provided by the

compiler. It first searches for kernel launches. In LLVM IR,

they are heuristically implied by calls to _cudaPushCall
Configuration, followed by calls to host stub functions

of kernels. Figure 4 (lines 6 ∼ 10) shows an example, which

corresponds to the VecAdd at line 32 in Figure 3. For each

kernel launch, the grid and block dimensions can be retrieved



1 // VecAdd is a CUDA kernel executed on GPU
2 __global__ void VecAdd(int *A, int *B, int *C) {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 C[i] = A[i] + B[i];
5 }
6

7 // main is sequential code running on CPU
8 int main(int argc, char **argv) {
9 int tid, A[N], B[N], C[N], *dA, *dB *dC;
10

11 // initialize the vectors
12 for (int i = 0; i < N; i++) {
13 A[i] = cos(i);
14 B[i] = sin(i);
15 C[i] = 0;
16 }
17

18 // the instrumented probe
19 tid = task_begin(N*3, 128, N/128);
20

21 // allocate device memory
22 cudaMalloc(&dA, N); // an input vector
23 cudaMalloc(&dB, N); // an input vector
24 cudaMalloc(&dC, N); // for storing result
25

26 // initialize the device memory
27 cudaMemcpy(dA, A, N, cudaMemcpyHostToDevice);
28 cudaMemcpy(dB, B, N, cudaMemcpyHostToDevice);
29

30 // launch the kernel on device
31 dim3 T(128), B(N/128);
32 VAdd<<<B, T>>>(d_A, d_B, d_C);
33

34 // retrieve the result
35 cudaMemcpy(C, dC, N, cudaMemcpyDeviceToHost);
36

37 cudaFree(dA);
38 cudaFree(dB);
39 cudaFree(dC);
40 task_free(tid);
41 }

Figure 3. An example GPU task, which consists of a kernel

launch and related GPU memory operations.

1 ...
2 %d_A = alloca float*, align
3 ...
4 call cudaMalloc(float** %d_A, i64 %8)
5 ...
6 %call = call _cudaPushCallConfiguration(i64 %g1,←↪

i32 %g2, i64 %b1, i32 %b2, i64 0, %struct.←↪

CUstream_st* null)
7 %a = load float*, float** %d_A, align 8
8 %b = load float*, float** %d_B, align 8
9 %c = load float*, float** %d_C, align 8
10 call VecAdd(float* %a, float* %b, float* %c)
11 ...

Figure 4. The kernel launch in LLVM IR for VecAdd (simpli-

fied for better reading).

by examining the first 4 parameters of _cudaPushCall
Configuration. Then the compiler pass identifies in-

volved GPU memory objects, which are pointer variables

used by cudaMalloc calls, by walking backward up the

def-use chain of each parameter of the kernel’s host-side

function, until it meets a terminating instruction, e.g.alloca.
As an example, in Figure 4, the pass will visit d_A via a, and
determine that d_A represents a GPU memory object since

it is used in a call to cudaMalloc. Finally, the related pre-

amble operations (e.g. cudaMalloc, cudaMemcpy) and
epilogue operations (e.g. cudaFree) can be easily identified
based on the def-use chain of pointers of memory objects,

since they are taken as parameters to the calls of these run-

time APIs. These steps are depicted by constructGPU
UnitTasks in Alg. 1. It returns a set of unit tasks (rep-

resented by GPUUnitTask), with each unit task compris-

ing exactly one kernel launch. Considering the fact that

cudaMalloc operations always dominates other GPU op-

erations on them same memory object, only cudaMalloc
(indicated by allocs) are considered in Alg. 1, and their

locations will used to derive the entry point of a GPU task.

In addition, many GPU tasks could share a set of memory

objects. A typical example is a process executing two suc-

cessive GPU kernels, 𝑘1 and 𝑘2, where the output of 𝑘1 (say,

array C) is an input to 𝑘2. If 𝑘1 and 𝑘2 are scheduled onto

two different devices, the data for C needs to be copied to

the device running 𝑘2. To avoid the cost of such data move-

ment, the framework schedules these two kernel launches

on the same device by packing them into one GPU task.

Therefore, further merge operations are applied to tasks that

share memory objects (constructGPUTasks in Alg. 1).

These unit tasks are combined into a large one (represented

as GPUTask in Alg. 1). For convenience, all independent

GPUUnitTasks will simply be converted to GPUTasks to
have a unified task representation. Logically, the (minimal)

code region containing all operations in a GPUTask is con-

sidered as a GPU task. CASE identifies the entry point and

the end point of the region using the dominator information.

Particularly, the lowest position in the control-flow-graph

(CFG) of the program that dominates all operations in a

GPUTask is selected as the entry point, and the highest

point in CFG of the program that post-dominates all opera-

tions in the GPUTask is treated as the end point.

Finally, for a GPUTask, its memory and computing re-

source requirements are analyzed by examining every mem-

ory allocation operation (cudaMalloc) and kernel launch

operation (e.g._cudaPushCallConfiguration) inside
the task. All of the analyzed information is presented in the

form of symbols, and a probe is inserted at a program point

which post-dominates all of these symbol definitions but

dominates the entry point of the task. The probe takes these

symbols as parameters and will interpret them at runtime to

get actual resource requirements for each GPU task and con-

vey them to the user-level scheduler. It summarizes memory



sizes to get total memory requirements and utilizes the max

grid and block dimensions as computing resources (the grid

and block dimensions of the first kernel will be utilized if

others are not available).

3.1.2 Lazy Runtime. Many applications encapsulate ker-

nel launches and other GPU operations in separate func-

tions, e.g. allocating GPU memory in init() and launch-

ing kernels in execute(). Static analysis cannot estab-

lish such def-use chains and domination relationships inter-

procedurally among GPU operations. To address this, the

compiler first runs an inlining pass to minimize such cases,

and then intra-procedurally analyses are performed to vali-

date its effects. If the issue still exists, CASE will then defer

the bindings of the memory operations to the lazy runtime.

The statically unbound operations are marked for lazy

binding by the compiler. This enables the lazy runtime to

record all such GPU operations and delay their bindings

(executions) until a kernel launch. For example, a call to

cudaMalloc will be replaced by the compiler with the

lazyMalloc, which will simply assign a unique pseudo

address for representing the memory object to be allocated,

instead of performing the actual allocation. Thus, the sub-

sequent CUDA operations on the memory object will see

the pseudo address (and in fact all those CUDA operations

are replaced with corresponding lazy runtime operations,

as well). CASE leverages the pseudo address to track op-

erations performed on each memory object. Specially, for

each memory object (represented as a pseudo address), a

queue is maintained by the lazy runtime to record GPU op-

erations applied on it (e.g., [cudaMalloc, cudaMemcpy])
in execution order. Just before every kernel launch operation

(e.g. __cudaPushCallConfiguration), a specific lazy
runtime API kernelLaunchPrepare is inserted by the

compiler. It will interpret the memory objects needed by the

kernel, replay the recorded GPU operations for each of them,

and replace their pseudo addresses with the real ones to en-

sure the kernel can be executed successfully. It also collects

the resource requirements of the kernel launch by associat-

ing (or binding) them to the CUDA task being launched and

conveys them to the scheduler. Note that these are the same

operations as before, just with value substitutions during a

short queue walk; thus there is negligible overhead to the

kernel launch. Such an approach, coupled with the above

static program analysis, binds full resource needs to a ker-

nel, thereby converting it into a device-independent entity

for the scheduler. The scheduler can then assign the task

dynamically to a device and allocate the required resources

recorded in the probes.

3.1.3 On-device Dynamic Allocation. In addition to

global memory allocations, dynamic memory allocation from

inside a kernel also needs to be considered. While it could

be difficult to get accurate memory resources that will be

allocated inside a kernel, it is easy to get the upper bound

Algorithm 1 The pseudo code of constructing GPU tasks

using static program analysis.

1: function buildGPUTasks(𝐼𝑅)

2: vector⟨GPUTask⟩ 𝑇𝑎𝑠𝑘𝑠
3: vector⟨GPUUnitTask⟩ 𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠

4: 𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠 ← constructGPUUnitTasks(𝐼𝑅)
5: 𝑇𝑎𝑠𝑘𝑠 ← constructGPUTasks(𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠) re-

turn 𝑇𝑎𝑠𝑘𝑠

6: end function
7:

8: function constructGPUUnitTasks(𝐼𝑅)

9: vector⟨GPUUnitTask⟩ 𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠

10: for each kernel launch 𝑙 in 𝐼𝑅 do
11: 𝑚𝑒𝑚𝑂𝑏 𝑗𝑠 ← getMemArgs(𝑙)
12: 𝑎𝑙𝑙𝑜𝑐𝑠 ← getAllocOps(𝑚𝑒𝑚𝑂𝑏 𝑗𝑠)
13: 𝑏𝑙𝑜𝑐𝑘𝑠 ← getGridDims(𝑙)
14: 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← getBlockDims(𝑙)
15: 𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠 .push(𝑏𝑙𝑜𝑐𝑘𝑠 , 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 , 𝑎𝑙𝑙𝑜𝑐𝑠 , 𝑙 )

16: end for
17: return𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠

18: end function
19:

20: function constructGPUTasks(𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠)

21: vector⟨GPUTask⟩ 𝑇𝑎𝑠𝑘𝑠
22: for each unvisited unit task 𝑢1 in𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠 do
23: set⟨CUDAUnitTask⟩ 𝑈𝑛𝑖𝑜𝑛;

24: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑢1]← true

25: for each unvisited unit task 𝑢2 in𝑈𝑛𝑖𝑡𝑇𝑎𝑠𝑘𝑠 do
26: if 𝑢1.𝑚𝑒𝑚𝑜𝑏 𝑗𝑠 ∩ 𝑢2.𝑚𝑒𝑚𝑜𝑏 𝑗𝑠 ≠ ∅ then
27: 𝑈𝑛𝑖𝑜𝑛.insert(𝑢1, 𝑢2)

28: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑢2]← true

29: end if
30: end for
31: if 𝑈𝑛𝑖𝑜𝑛.size == 0 then
32: 𝑇𝑎𝑠𝑘𝑠 .push(𝑢1)

33: else
34: 𝑇𝑎𝑠𝑘𝑠 .push(merge(𝑈𝑛𝑖𝑜𝑛))

35: end if
36: end for
37: return 𝑇𝑎𝑠𝑘𝑠

38: end function

based on current GPU runtime and architecture design. The

on-device heap size defaults to 8MB for the NVIDIA de-

vices we tested. Applications can increase this limit by ad-

justing the cudaLimitMallocHeapSize via a call to

cudaDeviceSetLimit; and this call must be placed be-

fore launching the kernel. Thus, the maximum heap memory

size used by dynamic memory allocations inside a GPU is

either statically bound to a CUDA task or dynamically inter-

cepted and bound by the lazy runtime by analyzing the call

to cudaDeviceSetLimit.



3.2 The Scheduling Framework
A user-level scheduler is deployed to place GPU tasks on

appropriate devices based on their resource requirements

(such as memory, CUDA cores, shared memory and execu-

tion time of a kernel). For applications, the scheduler exposes

a simple API, task_begin, to indicate the beginning of a

task. It is a synchronized API that blocks the process until

it returns. The aforementioned compiler pass will automati-

cally insert it at the beginning of each GPU task, and feed

it with appropriate parameters, which contain the details

about the resources required by the task, including the num-

ber of blocks, the threads per block, the total memory size
1
,

and the ID which is used by the runtime to uniquely iden-

tify the task. task_begin conveys this information to the

scheduler, and then waits for the response from the sched-

uler. In return, the scheduler feeds this information along

with the devices’ status to the deployed scheduling policy,

which finds an appropriate device for the task. The device ID

is returned to the application, and then the task_begin
directs the following GPU task to that device via specific

mechanisms provided by the GPU runtime system. The task

is suspended if no device has enough resources to host it.

The corresponding end call is task_free, which takes the

original ID as its parameter, and frees the resources required

by the task. For GPUTasks constructed by the lazy runtime,

these twoAPIs are called by the lazy runtimeAPI accordingly.

Based on this scheduling framework, different scheduling

policies are designed and implemented for different comput-

ing environments. In this paper, we mainly focus on design

of resource-aware scheduling framework, demonstrating its

benefits with a throughput-oriented scheduling policy.

4 Prototype Implementation
We implemented a prototype of the proposed scheduling

framework based on NVIDIA GPUs, CUDA-10.2 and LLVM-

9.0. After the scheduler returns the ID of the device where the

taskwill be executed,task_begin callscudaSetDevice
to map the task to the target device. For each GPU device,

MPS is enabled so that CASE can schedule kernels from

different processes to run on the same device, as long as

the device has enough resources. If there is no device with

enough resources for the requesting task, the prototype

scheduler will put the task ID into a queue and not respond

to the request until the needed resources are released. Since

task_begin is a synchronized API, it will automatically

suspend the application if it does not hear back from the

scheduler. All communication between applications and the

scheduler is implemented over shared memory.

A throughput-oriented scheduling policy that packs jobs

onto devices geared towards batch jobs is implemented in our

1
The compiler pass automatically instruments the application with the

code to compute total memory requirements by adding sizes of all memory

objects accessed by the kernel.

Algorithm 2 The pseudo code to select a GPU for a process,

emulating the way hardware tracks SM usage.

function sched(𝑡𝑎𝑠𝑘,𝐺𝑃𝑈𝑠)

𝑇𝑎𝑟𝑔𝑒𝑡𝐺 ← 𝑁𝑜𝑛𝑒

for 𝐺 in 𝐺𝑃𝑈𝑠 do
𝑇𝐵𝑠 ← 𝑡𝑎𝑠𝑘.𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠

if 𝑡𝑎𝑠𝑘.𝑀𝑒𝑚𝑅𝑒𝑞 > 𝐺.𝐹𝑟𝑒𝑒𝑀𝑒𝑚 continue
while 𝑇𝐵𝑠 > 0 do

𝑎𝑣𝑎𝑖𝑙𝑆𝑀 ← 𝐺.getNextSM(𝑡𝑎𝑠𝑘)
if !𝑎𝑣𝑎𝑖𝑙𝑆𝑀 break
𝑎𝑣𝑎𝑖𝑙𝑆𝑀.add(𝑇𝐵); 𝑇𝐵𝑠 − −

end while
if 𝑇𝐵𝑠 == 0 then

𝐺.commitAvailSMChanges()
𝑇𝑎𝑟𝑔𝑒𝑡𝐺 ← 𝐺

break
end if

end for
return 𝑇𝑎𝑟𝑔𝑒𝑡𝐺

end function

prototype. This policy demonstrates the advantages ofCASE
in terms of boosting device utilization as well as the system

throughput. We choose a throughput-oriented scheduling

policy because it demonstrates a dominant usage among

workloads, such as ML training, data classification/analytics

and linear algebra, which are very popular in modern HPC

and clouds systems [1, 24]. Important analytics, data mining

or ML is carried out by such workloads on data. For batch

workloads, the fairness and QoS are not as important as

the throughput of the system. Such systems aim to finish

as many jobs as possible, therefore improving the system

utilization and cost efficiency.

The prototype scheduling policy makes a decision based

on a vector of metrics including the availability of global

memory and SMs. Such a multi-resource oriented scheduling

problem is NP-hard. In this paper, we look at two scheduling

algorithms that are tailored specifically to the problem at

hand. Alg. 2 emulates hardware’s round-robin approach for

placing a task’s thread blocks across a GPU’s SMs. It tracks

exactly how many thread blocks and warps on each SM are

available (taking into account the device’s max thread blocks

and warps per SM). It also ensures that the memory required

by a task is available on the selected GPU. Both memory and

compute are hard constraints in this algorithm. In contrast,

Alg. 3 is simpler. It treats memory as a hard constraint, but

it treats compute as a soft constraint (because it can impact

performance but will not lead to a crash). It works by cycling

over the GPU devices, checking two criteria as it goes. First,

it checks if the memory requirement of an incoming task

can be met on a particular GPU device. If it can, it checks

if that device has the least compute load that it has come

across so far. Compute load is in terms of number of warps



Algorithm 3 The pseudo code to select a GPU for a process,

with memory safety and quick placement based on max

available warps.

function sched(𝑡𝑎𝑠𝑘,𝐺𝑃𝑈𝑠)

𝑇𝑎𝑟𝑔𝑒𝑡𝐺 ← 𝑁𝑜𝑛𝑒

𝑀𝑖𝑛𝑊𝑎𝑟𝑝𝑠 ←∞
for 𝐺 in 𝐺𝑃𝑈𝑠 do

if 𝑡𝑎𝑠𝑘.𝑀𝑒𝑚𝑅𝑒𝑞 < 𝐺.𝐹𝑟𝑒𝑒𝑀𝑒𝑚 then
if 𝐺.𝐼𝑛𝑈𝑠𝑒𝑊𝑎𝑟𝑝𝑠 < 𝑀𝑖𝑛𝑊𝑎𝑟𝑝𝑠 then

𝑀𝑖𝑛𝑊𝑎𝑟𝑝𝑠 ← 𝐺.𝐼𝑛𝑈𝑠𝑒𝑊𝑎𝑟𝑝𝑠

𝑇𝑎𝑟𝑔𝑒𝑡𝐺 ← 𝐺

end if
end if

end for
if 𝑇𝑎𝑟𝑔𝑒𝑡𝐺 then

𝑇𝑎𝑟𝑔𝑒𝑡𝐺.add(𝑡𝑎𝑠𝑘)
end if
return 𝑇𝑎𝑟𝑔𝑒𝑡𝐺

end function

currently scheduled on the device. If both criteria hold, then

it updates that current GPU to be the target for its task. In

other words, it tracks in-use memory and active warps on

each GPU, and picks the GPU with available memory and

the least compute load. In terms of resource tracking, it may

not be as accurate as Alg. 2, but it can take advantage of the

soft compute constraint and clear the job queue much faster

(because of its simplicity it has lower dynamic schedule cal-

culation overhead) when Alg. 2 might have held back a job.

Once a GPU is selected for a task, both the available memory

and warp capacity of the GPU are updated. In Alg. 2, this is

done with G.CommitAvailSMChanges, which is just a

struct assignment (of changes to the availSM values and

the task’s memory needs to the actual state of GPU G); in
Alg. 3, this is done with TargetG.Add(task), which just
adds the task’s resource requirements to the state of GPU

TargetG. Both scheduling algorithms are deliberately de-

signed to be very simple to minimize the runtime overheads

and to keep them dynamically reactive to short GPU jobs.

4.1 Currently Supported CUDA Features
Our prototype currently targets applications programmed

based on core CUDA APIs, such as benchmarks evaluated in

the paper. Advanced CUDA features, such as UnifiedMemory

and Streams, are not currently supported. We think support

for many of these features can be easily integrated which

is our future work. Unified Memory requires users to uti-

lize cudaMallocManaged instead of cudaMalloc to

allocate GPU memory, such that CUDA’s driver and hard-

ware can automatically manage the data transfer between

the GPU and system memory via page-fault handling at the

cost of high performance overheads. There are two potential

options for CASE to support the Unified Memory: 1) mak-

ing the compiler pass and the lazy runtime library recognize

calls to cudaMallocManaged. It would be similar to what

we have done with cudaMalloc. In addition, a new flag

would be added to the scheduling framework interface indi-

cating that the tasks are using Unified Memory and that the

memory “overflow” can be allowed; 2) designing and imple-

menting a new compiler pass to automatically replace calls

tocudaMallocManagedwith ones tocudaMalloc. Ap-
propriate calls to cudaMemcpywould also be instrumented

into the application to ensure the compiled code is function-

ality equivalent to the original source code.

In addition, our current prototype also assumes it can

dispatch each 𝐺𝑃𝑈𝑇𝑎𝑠𝑘 onto any available devices. How-

ever, in some applications, programmers may choose to

statically dispatch their kernels to a specific device (via

cudaSetDevice) due to some user-specific reasons.CASE
may assign the task onto other devices, which would be un-

expected by such users. Our benchmarks do not cover such

workloads, and they are not evaluated. In our future work,

we will perform in-depth evaluations on such workloads,

and improve the schedulers in CASE accordingly.

5 Evaluation
We evaluated CASE on two independent high-performance

servers: Chameleon
2
and Amazon AWS. The Chameleon

node consists of an Intel Xeon E5-2670 CPU, 128GB DRAM

and 2 NVIDIA P100s. The AWS node (p3.8xlarge instance)

is equipped with an Intel Xeon E5-2686 CPU, 244GB DRAM

and 4 NVIDIA V100s. Each P100 has 16GB RAM, 3584 cores;

each V100 has 16GB RAM, 5120 cores.

5.1 Methodology
For comparison, we implemented three other scheduling

policies: single-assignment (SA) scheduling, Core-to-GPU (CG)
scheduling, and SchedGPU which was introduced in [15].

We chose these three policies since they are representatives

about how current systems utilize multi-GPU devices. The

details for each of them are described in below:

SA shares the same scheduling strategy as provided in

Slurm [27] and Kubernetes which are widely utilized in mod-

ern HPC systems and data centers. It distributes workloads

among GPUs at process-level granularity. When a CUDA ap-

plication begins, SAmaps it to the first available GPU device.

Each application has dedicated access to the assigned device

during its lifetime. Each device has no more than one job at

a time (assuring memory safety and avoiding performance

interference), and no device sits idle once a request is made.

CG allowsmore than one process to share a GPU device via

NVIDIA MPS, considering that a device could be extremely

2
This is an experimental test-bed for computer science funded by the NSF

Future Cloud program.



underutilized in SA. It behaves more closely to an MPI appli-

cation, in which kernels from a group of MPI ranks can be

scheduled on a device by a programmer. Programmers have

to statically control the size of the group to assure memory

safety and minimize the performance interference, based

on their knowledge about applications. CG also attempts

to statically control the maximum number of jobs per GPU

through a pre-determined cpu-core-to-gpu ratio, but lacks

knowledge about the uncooperative processes. It derives this

ratio heuristically based on system configurations. For exam-

ple, in a system with 12 CPU cores and 2 GPUs, each GPU

device might serve kernels from no more than 6 cores (with 1

process per core), producing a ratio of 6:1. In our experiment,

we examined multiple such ratios. At runtime, CG visits the

GPU task queue in a round robin manner and maps the tasks

to GPU devices until the ratio is met (in the above example, 6

tasks will be mapped per GPU device). Obviously, CG stands

the risk of “out-of-memory” errors and crashes, since it has

no knowledge of the memory requirements of the tasks.

SchedGPU is described in Section 2. It packs as many jobs

as possible on the device, as long as the device has enough

memory. It shares some similarity to CASE in terms of track-

ing memory requirements of each request, and suspends the

process if the device does not have enough memory. Since

SchedGPU is not open-source, we prototyped it according to

the paper. We manually identified resource requirements of

each kernel and modified each benchmark’s source code to

pass them to the daemon.

These schedulers are derived from either current practical

systems or a state-of-the-art study. They are throughput-

oriented and provide a good baseline for analyzing CASE
to demonstrate the advantages of leveraging applications’

knowledge of their resource needs.We do not compareCASE
to others, e.g. FLEP [25], because they target QoS-sensitive

workloads, do not handle the multi-GPU case or are not

open-sourced. As pointed out earlier, they target a different

problem and thus a comparison will be apples to oranges.

Our evaluation seeks to answer the following questions:

1) What are the throughput and system utilization im-

provements achieved by CASE?
2) How did CASE achieve these improvements from the

perspective of job turn-around time (interval between

the job arrival time and its completion time in the

queue) and the memory-safe assurance?

3) What is the negative effect of CASE on an individual

kernel’s execution speed?

5.2 Results with Rodinia Benchmark Suite
In this section, we present the evaluation performed with Ro-

dinia Benchmark Suite. We comparedCASEwith SA and CG.
To emulate the job diversity in a throughput-oriented envi-

ronment, we created a set of job mixes leveraging the CUDA

benchmarks in the Rodinia suite v3.1 [3, 4]. In summary, 8

different job mixes were created from 7 Rodinia benchmarks

as representative of modern workloads. These benchmarks

include backprop (pattern recognition), srad-v1 and srad-v2

(image processing), lavaMD (molecular dynamics), needle

(bioinformatics), dwt2d (image/video compression), and bfs

(graph).

Various problem sizes were used for each benchmark in

each job mix. Our mixes favor larger problem sizes to mimic

realistic, heavy GPU kernels. In our setting, these bench-

marks typically consume 1 ∼ 13GB memory footprints. We

mark benchmarks with kernels that have over a 4GB mem-

ory requirement as “large”. Those between 1 and 4 GB are

considered small. Our mixes are created based on the ratio

of large:small jobs. We have four different mixes: 1:1, 2:1, 3:1,

and 5:1. Every mix matches one of these ratios with either

16 or 32 total number of jobs. The jobs are randomly chosen

from their respective sets (large or small). Table 1 shows the

arguments passed for each Rodinia benchmark. The table is

ordered by increasing max kernel size of each benchmark.

All Rodinia workloads are randomly generated from this ini-

tial list. Table 2 shows the details of the randomly generated

job mixes; each job mix executes around 5 (for 16-job mixes)

or 10 (for 32-job mixes) minutes.

We treat each job mix as a batch. All jobs from a job mix

arrive at the same time, as opposed to arriving at predeter-

mined or random times. The scheduler will dequeue a job

from the batch and schedule it until all jobs in the batch get

scheduled or all devices are fully occupied.

5.2.1 CASE Scheduling Algorithms: Comparison. In
this subsection, we compare Alg. 2 and Alg. 3 introduced in

Section 4. Figure 5 shows their throughput evaluated with 8

jobmixes in a 4×V100 environment. On average, the through-

put for Alg. 3 is 1.21× higher. (Note, for the absolute through-
put numbers (jobs/sec) for this experiment and others in the

evaluation, please refer to Tables 7 and 8 at the end of the sec-

tion). We also scaled our experiments to 32-, 64-, and 128-job

mixes, and observed similar improvements. Alg. 3 outper-

forms Alg. 2 mainly because of the extra time jobs wait for

a GPU under Alg. 2. We observed a 30% increase in Alg. 2

in terms of job wait times. Alg. 2 ensures there is sufficient

compute available before running each job, whereas Alg. 3

schedules jobs optimistically and sooner, taking advantage

of fast completing jobs, even when compute is stressed. This

confirms our intuition that it is better to design an imprecise

but lightweight scheduler that dispatches a job quickly to

a device than one which is precise but relatively slower to

analyze job queue. The remaining evaluation is focused on

Alg. 3, because it has better performance.

5.2.2 Throughput. Figure 6 compares the throughput

of the schedulers. The results are normalized to SA. As
compared to SA, CASE improved system throughput by

1.8 ∼ 2.5× (on average 2.2×) on P100s and 1.4 ∼ 2.5× (on

average 2×) on V100s. This is mainly because CASE allows



Table 1. Rodinia benchmarks and their command line arguments, in order of increasing kernel size.

Benchmark Command line arguments
backprop 8388608

bfs data/bfs/inputGen/graph32M.txt

srad_v2/srad 8192 8192 0 127 0 127 0.5 2

dwt2d data/dwt2d/rgb.bmp -d 8192x8192 -f -5 -l 3

needle 16384 10

backprop 16777216

srad_v1/srad 100 0.5 11000 11000

backprop 33554432

srad_v2/srad 16384 16384 0 127 0 127 0.5 2

srad_v1/srad 100 0.5 15000 15000

lavaMD -boxes1d 100

dwt2d data/dwt2d/rgb.bmp -d 16384x16384 -f -5 -l 3

needle 32768 10

backprop 67108864

lavaMD -boxes1d 110

srad_v1/srad 100 0.5 20000 20000

lavaMD -boxes1d 120

Table 2. Rodinia workload mixes.

Workload Mix Workload Mix

W1 16-job,1:1-mix W2 16-job,2:1-mix

W3 16-job,3:1-mix W4 16-job,5:1-mix

W5 32-job,1:1-mix W6 32-job,2:1-mix

W7 32-job,3:1-mix W8 32-job,5:1-mix

Figure 5. Throughput for Alg. 2 and Alg. 3 on a 4×V100
system (normalized to Alg. 2 for easy comparison, and the

absolute throughput (jobs/second) for the baseline is in Ta-

ble 7).

multiple kernels from different processes to be concurrently

executed on the same device. Although CG also allows co-

execution of kernels from different processes, CASE still

outperformed CG throughput by an average of 64% on P100s

and 41% on V100s. This is mainly because CG has no knowl-

edge about the memory or SM requirements of workloads;

therefore it could overload GPU devices and cause some jobs

Table 3. Percentage of crashed jobs for CG (P100s/V100s).

# workers 1:1 mix 2:1 3:1 5:1
3/6 0/0 3%/17% 8%/17% 0/0

4/8 14%/13% 6%/19% 6%/25% 9%/13%

5/10 13%/15% 13%/25% 20%/20% 22%/25%

6/12 16%/33% 17%/29% 16%/38% 16%/50%

to crash due to memory safety violations. As shown in Ta-

ble 3, the crash behavior of the CG scheduler was erratic.

The expected trend (which is borne out in the table) is that as

the number of workers increases, the chance for crashes un-

der CG should increase; but there could be some exceptions

due to many uncontrollable factors (various job sizes among

large jobs, randomness of job arrival time, etc.). For example,

in the 6-worker, 5:1 mix on V100s, the first 4 jobs happen

to have 7.8GB, 10GB, 7.8GB, and 8.3GB footprints, which

are spread across the 4 GPUs (each with 16GB memory);

the next 2 jobs (assigned to the first 2 GPUs by CG) have
2.0GB and 4.7GB footprints. Thus, there is no OOM error,

and the remaining schedule similarly allows all jobs to finish

successfully. Nevertheless, for job mixes with large jobs, the

percentage of crashes due to CG is alarming, ranging from

13% to 50% on V100s. Because of this, CG achieved similar

or even lower throughput than SA for W6 and W7 in P100s

and W3 and W6 in V100s. W1 in V100s is an exceptional

case where CG happened to run efficiently without crashing,

leading to higher throughput thanCASE. This is becauseW1

has a 1:1 ratio of large:small jobs, and on this workload, CG
was (coincidentally) able to pack the jobs without crashing

but with lower runtime overheads than CASE.



(a) on the 2×P100 system (b) on the 4×V100 system

Figure 6. Throughput for SA, CG, and CASE (normalized to SA, and the absolute throughput (jobs/second) for the baseline is

in Table 7).

Figure 7. Utilization comparison among CASE, SA and CG
using W7 from Rodinia on the 4×V100 system.

5.2.3 System Utilization Improvement. Figure 7 shows
the system utilization of CASE, SA and CG on the AWS plat-

form with 4×V100s for the W7 job mix. The NVML library

is used to sample the device status every 1ms. The figure

plots the average device (SM) utilization across all 4 V100

GPUs. As shown in the figure, CASE achieved significantly

higher device utilization. The peak utilization for CASE is

78%, and for SA and CG it is 48%. The average utilization

(across lifetime of the workload) is 23.9% for CASE vs. 9.5%

for SA and 9.3% for CG.

5.2.4 Turnaround Time Speedup. Since the workload
involves batch processing, the experiment begins with a

queue already full of jobs. We view these jobs as requests,

and measure the turnaround time for each job. While some

degree of slowdown can happen when a particular job is

co-executing with others, the turnaround time (time interval

between the job arrival time and completion time) can be

boosted by improving the throughput and reducing the time

these requests sit in the queue. Table 4 shows the turnaround

time speedups over SA for all mixes and workload sizes on

Table 4. Average job turnaround speedup for CASE.

GPUs # of jobs 1:1 mix 2:1 3:1 5:1
2×P100s 16 jobs 4.9× 2.3× 4.9× 4.3×
2×P100s 32 jobs 4.6× 3.2× 3.6× 2.0×
4×V100s 16 jobs 2.4× 2.0× 3.5× 2.6×
4×V100s 32 jobs 3.8× 2.9× 2.9× 2.6×

both the P100s and V100s. We observed an average of 3.7×
for the P100s and 2.8× for the V100s, and a maximum of

almost 5× in some cases. The absolute job completion times

average 236s and 122s for the P100 and V100s, respectively.

5.3 Results with the Darknet Benchmarks
Due to the prevalence of deep learning, in this section, we

present a study solely based on these types of jobs. In this

evaluation, only the throughput, job turn-around time and

the device utilization are examined. The off-the-shelf learn-

ing framework, Darknet [16], is utilized as the benchmark.

Darknet provides several machine learning models, such as

YOLO and RNN for both training and inference tasks. Its

pre-trained models for image classification are competitive

with popular networks like ResNet-50 [10] and VGG-16 [21]

(in terms of top-1 and top-5 accuracy, GPU timing, and size);

and as a framework it is also effective for creating other

types of neural network tasks (such as RNN text genera-

tion). We ran 4 types of jobs: neural network training and

prediction for image classification (CNN), real-time object

detection (CNN), and text generation (RNN). For prediction,

we used the pre-trained Darknet53-448x448 architecture and

weights for the 1000-class ImageNet competition [18]; for

training, we used the small architecture provided by Darknet

for CIFAR-10 [12]; for real-time object detection, we used

the pre-trained yolov3-tiny architecture and weights on the

provided images; for RNN-based text generation, we used the

pre-trained network based on Shakespeare’s complete works.



Figure 8. Throughput on homogeneous, parallel 8-job neural

network workloads on 4×V100s (normalized to SchedGPU,
and the absolute throughput (jobs/second) for the baseline

is in Table 8).

Table 5 shows the command used for each Darknet task. All

Darknet workloads in the evaluation are eight homogeneous

jobs for a given task.

We ran two neural network experiments. In the first we

compared CASE against SchedGPU [15], a state-of-the-art

work for intra-node scheduling. We ran 4 homogeneous

workloads (1 for each type of task described above), with 8

jobs in each workload. The memory size of each neural net-

work is between 0.5-1.5GB, so 8 jobs can always fit within a

single V100’s memory. Since SchedGPU uses memory capac-

ity as the only resource criterion in scheduling, this setting

faithfully ensures that the SchedGPU can schedule all jobs to

run on one device at a time for its best performance, since

the memory capacity is not exceeded. Note that the Rodinia

workloads (intentionally) exercise multiple GPUs, which

SchedGPU cannot effectively handle (see Section 2 and the

MPS discussion in Section 1). The Darknet experiments are

designed, however, to allow SchedGPU to run each workload

without queuing it, which results in a fair comparison with

CASE.
Figure 8 presents the throughput of SchedGPU and CASE

(normalized to SchedGPU). It shows that SchedGPU signifi-

cantly under-performs on modern neural network loads at

least those in these experiments, which have a high compute

resource need in terms of warps or thread blocks. Because

SchedGPU does not account for this resource, it is unable to

spread work across GPUs and can easily oversaturate a GPU

device. CASE achieves throughput speedups of 1.4×, 2.2×,
and 3.1× over schedGPU for the predict, train, and generate

tasks. For detection, the frameworks have similar results.

This is because the real-time object detection network used

in our evaluation utilized 25% or less GPU resources, so the

compute units are not saturated in this case. The key take-

away is that single-GPU performance, even when it satisfies

the simultaneous memory requirements of all running jobs,

can and will suffer under common, modern machine learning

Figure 9. Utilization comparison between CASE and

SchedGPU using 8 Darknet jobs on the 4×V100 system.

tasks. And memory requirements alone are not good enough

to be used in a scheduler for better system performance. We

also ran one large-scale experiment in a manner similar to

our Rodinia setup, in order to verify thatCASE is effective on

large mixes of these neural network jobs. We ran a 128-job,

random mix of the 4 tasks. CASE completed the jobs 2.7×
faster than single-assignment, which is comparable to the

results we see for Rodinia. We attribute such a huge improve-

ment of CASE to its ability of balancing workloads among

devices. As shown in Figure 9, on a 4-device system, CASE
averaged ~80% device utilization, while SchedGPU only has

23%. This implies that, in SchedGPU, one of the devices is
extremely overloaded with almost 100% utilization, while

the other 3 devices are idle and wasted.

5.4 Kernel Slowdown
We looked at the amount of extra time needed to run a given

kernel on the GPU with this framework. We compared the

two scheduling algorithms to single-assignment on the 8 Ro-

dinia workloads (Table 2) on the 4×V100 system. As we see in

Table 6, Algorithm 2 averaged 1.8% slowdown; Algorithm 3

averaged 2.5%. The averages are over each workload’s slow-

down. Note that the “speedups” in workload 1 are noise.

Standard deviations for the kernel slowdowns are ~5% and

3% for Algorithms 2 and 3, respectively, for this workload.

Thus, both algorithms cause negligible slowdowns to the

kernels themselves; and compared with each other, the dif-

ference is less than 1%. The absolute times for these kernels

range from less than 1ms to over 20s.

6 Future Work
In our future work, we will improve CASE in the following

aspects. 1) Process isolation: Currently, CASE is mainly de-

signed to target HPC applications and assumes that process

isolation is treated elsewhere. This assumption is usually

easy to meet in HPC settings, because all applications run-

ning in supercomputers are only from authorized users and



Table 5. Darknet tasks and their corresponding commands.

Task Command
Predict cat images-large.txt | darknet classifier predict imagenet1k.data darknet53_448.cfg darknet53_448.weights

Detect cat images-medium.txt | darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights

Generate darknet rnn generate cfg/rnn.cfg weights/shakespeare.weights -len 100000

Train darknet classifier train cfg/cifar.data cfg/cifar_small.cfg

Table 6. Kernel slowdowns for Algorithms 2 and 3 for Ro-

dinia on 4×V100s, expressed as a percentage of SA.

Sched W1 2 3 4 5 6 7 8 Avg
Alg2 -0.3 1.0 0.3 4.1 2.9 5.1 1.1 0.6 1.8

Alg3 -0.7 0.8 7.0 3.1 2.2 4.1 0.4 2.9 2.5

Table 7. Absolute jobs/sec throughput across workloads for
each of the baselines for Rodinia (Alg2-V100 is the baseline

for Figure 5, SA-P100 is the baseline for Figure 6a, SA-V100

is the baseline for Figure 6b).

WL Alg2-V100 SA-P100 SA-V100
1 0.16 0.073 0.139

2 0.13 0.068 0.123

3 0.26 0.083 0.17

4 0.45 0.108 0.189

5 0.28 0.088 0.174

6 0.27 0.099 0.184

7 0.27 0.107 0.182

8 0.2 0.07 0.143

Table 8. Absolute jobs/sec throughput across workloads

for the baseline for Darknet (SchedGPU is the baseline for

Figure 8).

WL SchedGPU
Predict 0.042

Detect 0.093

Generate 0.037

Train 0.013

are already deemed safe and trustworthy. It may not hold

for some other environments, however, where independent

processes cannot be trusted, which could have implications

to both fairness and security. In terms of fairness, a “greedy”

process may request and hold large resources (e.g. the major-

ity of a GPU’s memory), which can negatively impact other

processes. In terms of security, allowing independent jobs

to run simultaneously on a GPU with no oversight clearly

violates best practice. Existing techniques can aid in both

cases and be combined with CASE. For example, existing

preemption techniques can be integrated to mitigate the

fairness issue (see our discussion in Section 2). Similarly,

NVIDIA’s MIG feature can help both fairness and security by

segmenting hardware resources and preventing interference.

2) Robustness: CASE currently also assumes that each GPU

application is well programmed and will not crash when

running independently on the system. We will relax this

assumption to support cases when a GPU task crashes un-

expectedly due to bugs or other failures. CASE’s runtime

system will have to capture such crashes with customized

signal handlers, which would allow it to accurately track

device statuses even in these scenarios.

7 Conclusion
In this paper, we present a fully automated GPU schedul-

ing framework to uniformly and transparently manage GPU

resources. It constructs CUDA tasks via static program anal-

ysis and a lazy runtime, and schedules CUDA tasks from

independent workloads (uncooperative processes) onto GPU

devices. With the knowledge of resource requirements for

each CUDA task, it guarantees zero OOM errors among co-

executing tasks from independent processes. We evaluated

the system on the Rodinia benchmark suite on two different

GPU families, Pascal and Volta. On average, on a 2-GPU

P100 system, the framework improves system throughput

by 2.2× over a memory-safe scheduler, and by 64% over a

memory-unsafe scheduler that has a crash frequency of 11%.

On a 4-GPU V100 system, the throughput improves by an

average of 2× over a memory-safe scheduler, and by 41%

over a memory-unsafe scheduler with a crash frequency of

20%. We evaluated the 4-GPU system on neural network

workloads and measured similar results (2.7× throughput

improvement over competing state-of-the-art [15]). Individ-

ual kernel execution speeds degrade by 1.8% to 2.5% under

the framework. CASE achieves a peak utilization of 78% for

Rodinia with an average of 23.9% and 83% peak and aver-

age utilization for ML workloads on a 4 V100 GPU system.

Supported by this empirical evaluation, we believe that such

an automated solution is a practical way of solving the GPU

sharing problem to boost throughput and device utilization.

The artifact of this work is available (refer to Appendix A

for details).

Acknowledgments
We thank anonymous reviewers and the shepherd for their

invaluable comments. They helped to improve the paper

significantly.



Appendix
A CASE Artifact
The artifact for CASE is hosted by Zenodo at https://zenodo.
org/record/5787410. Its digital object identifier (DOI) is 10.528
1/zenodo.5787410. A READMEwith instructions for building

and runningCASE can be found in the zipped archive within

GPU-Sched-master.zip.
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